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ABSTRACT

Direct imaging and spectroscopy of Earth-like planets will require high-contrast imaging at very close angular
separation: 1el0 star to planet flux ratio at a few tenths of an arcsecond. Large telescopes in space are necessary
to provide sufficient collecting area and angular resolution to achieve this goal. In the static case, coronagraphic
instrument designs combined with wavefront control techniques have been optimized for segmented on-axis
telescope geometries, but the extreme wavefront stability required at very high contrast of the order of tens of
picometers remains one of the main challenges. Indeed, cophasing errors and instabilities directly contribute to
the degradation of the final image contrast. A systematic understanding is therefore needed to quantify and
optimize the static and dynamic constraints on segment phasing. We present an analytical model: Pair-based
Analytical model for Segmented Telescopes Imaging from Space (PASTIS), which enables quasi-instantaneous
analytical evaluations of the impact of segment-level aberrations and phasing on the image contrast. This model
is based on a multiple sum of Young interference fringes between pairs of segments and produces short and
long exposure coronagraphic images with a segmented telescope in presence of local phase aberrations on each
segment. PASTIS matches end-to-end numerical simulations with high-fidelity (3% rms error on the contrast).
Moreover, the model can be inverted by dint of a projection on the singular modes of the phase to provide
constraints on each Zernike polynomial for each segment. These singular modes provide information on the
contrast sensitivity to segment-level phasing errors in the pupil, which can be used to derive constraints on both
static and dynamic mitigation strategies (e.g. backplane geometry or segment vibration sensing and control).
The few most sensitive modes can be well identified and must be controlled at the level of tens of picometers,
while the least sensitive modes in the hundreds of picometers. This novel formalism enables a fast and efficient
sensitivity analysis for any segmented telescopes, in both static and dynamic modes.

Keywords: Segmented telescope, cophasing, exoplanet, high-contrast imaging, error budget

1. INTRODUCTION

Achieving direct imaging and spectroscopy of Earth-like planets means being able to resolve smaller and fainter
objects, a typical objective being to image planets with a 10719 planet-to-star contrast and a 0.1 arcsec angular
separation. Different solutions and tools have been developed to achieve this goal, such as sending telescopes
to space (to null the impact of the atmospheric turbulence), increasing of the size of the primary mirror (to
perform high-resolution images), combined with coronagraphs (to remove the starlight) and deformable mirrors
(to perform wavefront control). To fit these large telescopes into the launch vehicle, they have to be folded and
therefore segmented.
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Recent developments in coronagraphy and wavefront control start to absorb the effect of the diffraction
due to the segmentation and to the spiders on the final image and contrast: for instance, apodized pupil Lyot
coronagraphs (APLCs)!™3 and Phase-Induced Amplitude Apodization (PIAA) coronagraphs* and the Active
Compensation of Aperture Discontinuities (ACAD-OSM)?'¢ are now optimized to compensate for these effects.
However, such solutions only correct for amplitude discountinuities and do not take into account the case where
all segments are not perfectly aligned.

Indeed segmentation generates other issues, such as cophasing errors or segment unstabilities. Their impact on
the coronagraphic Point Spread Function (PSF) quality needs to be studied, in particular to set up manufacturing
and stability constraints for a viable mission. The traditional method is based on an end-to-end model of the
optical system, on which a numerous amount of aberration phases are applied and propagated.”® Because of the
numerous factors that impact the contrast (local/global aberrations, phasing errors, segment vibrations, thermal
drift...), this error budget is extremely time- and computer-consuming.

We developed a tool called the Pair-based Analytical model for Segmented Telescopes Imaging from Space
(PASTIS) that enables a fast error-budget for any segmented pupil.”!? This model is mainly dedicated to
space telescopes, such as the James Webb Space Telescope (JWST),!+ 12 the Large Ultra-Violet Optical Infrared
(LUVOIR) telescope!® ' or the Habitable Exoplanet Imaging Mission (HabEx),'® but can also been applied to
ground-based segmented telescopes such as the Extremely Large Telescopes (ELTs).!6719

PASTIS enables to express directly the contrast of a coronagraphic image as a function of the Zernike
coefficients of the segments’ aberrations. This model can be inverted on the basis of the singular modes of
the wavefront to directly provide the requirements in segment phasing, alignment, polishing, and stability to
perform a target contrast. It was developed in a previous paper'? in the static case where only one kind of
Zernike polynomial is present on the segments. In this proceeding, we develop PASTIS to two other cases, more
general: the general case where the segment-level aberrations are decomposed on several Zernike polynomials
and the dynamic case, where the segments are impacted by vibrations that deteriorate the contrast.

Section 2 provides reminders about the PASTIS model and its main conclusions, for static errors of one single
Zernike polynomial. This section also provides the basics for the developments of the next sections. In section 3,
we extend this formalism to combinations of Zernike polynomials and apply it to segment phasing errors (piston,
tip, and tilt). Finally in section 4, we develop PASTIS to dynamic segment aberrations, and apply it to the case
of all segments vibrating at the same frequency.

2. REMINDERS ABOUT PASTIS FOR ONE SINGLE ZERNIKE POLYNOMIAL

The development of the Pair-based Analytical model for Segmented Telescopes Imaging from Space for one kind
of Zernike polynomial applied on the pupil is described in a previosu paper.!? This section consists of a summary
of the main results of these papers, from the theoretical development of the model to its validation. It provides
the needed basics for the extensions proposed further in this proceeding.

2.1 Theory
2.1.1 Hypotheses

We consider a segmented telescope, composed of identical segments. Behind the telescope, a coronagraph enables
high-contrast imaging in the dark hole.

PASTIS is developed under different hypotheses.
First of all, we only consider small segment-level phase aberrations on the primary mirror. This means that:
- the amplitude aberrations are neglected

- other sources of aberrations such as downstream aberrations or the effect of the secondary mirror are also
neglected

- global aberrations on the primary mirror of the telescope are sampled as a sum of segment-level aberrations?’

- we consider only residual phase errors.
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Figure 1. Typical examples of phase errors for the section 2, where only one single Zernike polynomial is considered
at a time. Top line from left to right: piston, tip, and tilt. Bottom line from left to right: focus, 45°-astigmatism, and
0°-astigmatism.

These hypotheses are kept in this entire proceeding.

Furthermore, in this section, the pupil phase aberrations are simplified to the case of one single Zernike
polynomial present on the segments. For instance, it can correspond to segment-level piston aberrations only,
if the segments are not well phased, or to segment-level focus aberrations only if the segments have focus-like
polishing errors (See Fig. 1).

2.1.2 Expression of the model

The phase ¢ is expressed as a sum between the segment-level phases, each of them being expressed on the basis
of Zernike polynomials (Z);e[1,n..,] defined on a generic segment shape:

Nzer Tseg

o(r) =D ariZi(r —r), (1)

=1 k=1
where:
- Ngeg is the number of segments
- (ak,1)ke[1,n..,] are the local Zernike coefficients of Z;
- where r is the position vector in the primary mirror plane (pupil plane)
- r the position vector from the center of the pupil to the center of the k-th segment.
In this section, we simplify this formula using one single Zernike polynomial.

Furthermore, we approximate the intensity in the dark hole I as:
- 2
I(w) = || 3w)| (2)

where u is the position vector in the detector plane (focal plane) and f is the Fourier Transform of the function
f
We then obtain that the intensity in the dark hole is a sum of interference fringes, similar to the Young

experiment, between all pairs of segment, modulated by a low-frequency envelope. This envelope depends only
on the considered Zernike polynomial, defined on a segment.

Nseg Nseg

N 9 Nseg
1) = |Ziw)| < et + Y Y nithiichnian.cos((rie — Tig)-u)) 3)
k=1

k1=1ko=1,ko#k1
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Figure 2. Pupil used for all applications in this proceeding, composed of 36 hexagonal segments. It is also one of the
pupils of the Segmented Coronagraph Design and Analysis (SCDA) study.?

(Ck,l)ke[l,nseg] are calibration coefficients, added here to take into account the coronagraph. They are obtained
in a calibration step and strongly related to the apodization ratio of the segments.

This expression can be averaged to get the contrast in the dark hole:

Nseg Mseg

C=Cy+ Z Z Oy 1Oky 1Ty kol (4)

k1=1ko=1

where Cj is the deep contrast of the coronagraph, ie. the best contrast the coronagraph can achieve, without

~ 2
aberrations, and V(ky, k2) € [1, nseg)?, My kot = <HZl(u)‘ Chy ,1Cky,1 €OS((Tky — Tk, )W) DH, (f)pH corresponding
to the mean value of the function f over the dark hole. This equation is equivalent to:

C=0Cy+ AZZWZAE5 (5)
where the vector A; contains all the coefficients (ay1)re[1,n..,], and (i, ) € (1, nseq)?, My(i, §) = mi j-

2.2 Application
2.2.1 Chosen application case

The PASTIS model is adaptable to all segmented pupils. For this proceeding, we choose to apply it to the
36-segment pupil presented in Fig. 2, with a monolithic source at 640nm.

It is combined with an Apodized Pupil Lyot Coronagraph (APLC) that enables a contrast of a few 107! in
a dark hole between 4\/D and 9\/D, without aberrations. The impact of the coronagraph on the final image is
illustrated in Fig. 3.

In the application section, the end-to-end simulation corresponds to an explicit computation of the electric
field from plane to plane using a Fourier formalism and the different masks composing the APLC.

2.2.2 Validation of PASTIS

In Fig. 4 we can find the contrasts computed from both PASTIS and the end-to-end simulation, for piston
aberrations from 1pm to 10nm rms on the segments. For each rms piston value, 250 random phases are tested,
providing 250 contrasts with the end-to-end simulation and 250 contrasts with PASTIS. From these two sets, we
plot the minimum contrast, the maximum contrast, and the average contrast.

For all phases used for these curves, PASTIS provides an estimation of the contrast with an error around 3%
rms. But the main advantage of PASTIS remains that the plots have been 107 times faster to obtain the the
ones from the end-to-end simulation.
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Figure 3. Left: PSF of the SCDA pupil (see Fig.2), obtained with an end-to-end numerical simulation with no coron-
agraph and aberrations. Center: PSF of the same SCDA pupil, obtained with an end-to-end numerical simulation with
coronagraph and without aberrations. Right: Cut along the horizontal radius of the two previous PSFs (red: without
APLC, green: with APLC). The two blue dashed lines correspond to the limits of the dark hole.
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Figure 4. Contrast as a function of the rms piston aberrations on the segments. It was computed through two methods:
the end-to-end model (dashed lines) and PASTIS (continuous lines). For each rms piston value, 250 random phases are
selected, so 250 contrasts computed, and the minimum, average, and maximum values are plotted.
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Figure 5. Some eigen modes in the piston case. Top: the four modes with the highest eigen values. We can notice that
the segments the most concerned by these modes belong to the second ring, ie. are the least hidden by the coronagraph
(apodizer and Lyot stop). Bottom: the four modes with the lowest eigen values. We can recognize discrete versions of
low-order Zernike polynomials (astigmatisms, tip, and tilt).

As a comparison, similar results can be found in the studies of Stahl et al.,?! later completed in Stahl et al.,??
using end-to-end simulations.

2.3 Stability analysis

The objective of an error budget is to define constraints that enable to fulfill a certain performance. In our case,
we want to set up constraints in terms of rms error on the segments to get a target contrast C'. From Fig. 4
we can for instance derive from a target contrast the rms error for piston-like segments’ phasing. However, we
propose another approach, which takes into account the segment-dependant contribution to the contrast.

It is based on a projection of the phase on the eigen modes of the system. Indeed, by applying a Singular
Value Decomposition (SVD) on the matrix M;, we can obtain the eigen values (Ap1)pe1,n..,] and eigen modes
(Up,l)pe[l,nseg] of the system. Fig. 5 illustrates a few modes issued from Mp;sion: the four modes with the highest
eigen values (so impacting the contrast the most), and the four modes with the lowest eigen values (impacting
the contrast the least). We can notice that the modes with the highest eigen values are made of aberrations
located on the second ring of segments, ie. the least hidden by the optical components (apodizer and Lyot stop),
while the modes with the lowest eigen values correspond to discretized global low order Zernike polynomials: the
two astigmatisms (31 and 32) and the tip-tilt (33 and 34). It is known that in the design process, the apodizer
has been optimized to be robust the tip-tilt misalignments, and this robustness is confirmed here. The 35-th
mode, not represented in Fig. 5, has an almost null eigen value, and corresponds to a global piston of the primary
mirror, which is known for not affecting the contrast.

The eigen modes form a basis of orthonormal vectors, so the final contrast due to a Zernike coefficients vector
A is exactly the sum of the contrasts due to the projections of A on the different eigen modes:

Nseg—1

C= 2_:0 C, (6)

Then, to get a contribution to contrast smaller than C, on the p-th mode, the projection of the phase on this
mode has to be smaller than

Op =y - (7)

We call o, the contribution of the phase to the mode p.1°
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Constraints on the different modes Performance verification at the upper limits of the tolerances
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Figure 6. Left: Contributions (ap)pe[o,nseg,ll on the different piston modes to reach a final target contrast of 107°, in the
case where only local pistons on segments deteriorate the contrast. Right: Cumulative contrasts on these piston modes
at their upper constraints to reach a final target contrast of 107%. In these two plots, only 35 modes are indicated, since
the mode with a very low eigen value corresponds to a global piston on the pupil and is chosen to not contribute to the
final contrast.

For applications, we consider that all modes contribute equally to the contrast, ie. all the C), are equal,
and that C = 107%. From the previous equation, we then derive the results of Fig. 6: (a) indicates the mode
contributions (0p)pe[o,n..,—1) that generate such contrasts and (b) shows the cumulative contrasts generated by
these constraints: both plots issued from PASTIS and the end-to-end simulation are almost linear and the error
on the final contrast is 3.75%. We can conclude that this method to compute the tolerances is relevant.

3. ZERNIKE POLYNOMIAL COMBINATION

The previous section introduced the PASTIS model for a simple application case: the aberrations are static and
composed of the same Zernike polynomial on all segments. In this new section, we study the case where the
segment-level aberrations are more complex, being composed of several Zernike polynomials. As an example, we
will focus on classic phasing errors, ie. a combination of piston, tip, and tilt aberrations.

3.1 Theory

We use the expression of the phase of Eq. 1, without simplifying it to the case of one single Zernike polynomial.
We obtain in the general case:

Nzer Mseg

o(u) = Z Z a1 Zye N (8)

=1 k=1
Combining this equation and Eq 2 provides:
Nzer Mseg Nzer Mseg
— . — %k .
—1r a i a
(W)= > annZie ™™ < YY" ar, 1,21, ™2
l1=1k1=1 lo=1ko=1 (9)
Nzer Nzer Nseg Mseg
~ % .
(T —I a
= N7, 2, ) D ak 1k, et TRe )
Li=11lp=1 k1=1ks=1

Since the intensity in the dark hole is real, ¢’("k2= k)% = cos((rk, — Ik, ).u) + isin((rx, — ri, ).u), and the

—~ %
envelopes Z;,.Z;, are either real or imaginary, this expression is in practice sums of interference fringes between
all pairs of segments, modulated by low-frequency envelopes.
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Contrast sensitivity to Tip-Tilt on segments
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Figure 7. Contrast as a function of the rms piston-tip-tilt aberrations on the segments. It was computed through two
methods: the end-to-end model (dashed lines) and PASTIS (continuous lines). For each rms value, 250 random phases
are selected, so 250 contrasts computed, and the minimum, average, and maximum values are plotted.

By averaging this expression and taking the calibration coefficients (cx 1)ke[1,n..,] into account, we obtain:

C=Co+AMA (10)
where:
A=[A o An,)]
= [alvl o anseg71 o a’lanZer o anse(p"Zer}
Myy .. Mg, (11)
M =
M’nZeml MnZe'raner

A is a concatenation of all the vectors A;, while M is a block-diagonal matrix made of submatrices M, 4,,
containing the coefficients:

My, ks k2] = My ko iy 1o

7 7 ¥ i(rk, —Ti, ).u (12)
= Chy 1y Cholo (L1, 21y €27 ) p

3.2 Application to the case of segment-level pistons, tips, and tilts

PASTIS in the case of Zernike polynomials’ combination can be validated with a comparison with an end-to-end
simulation. We use the same application case than described in section 2.2.1.

Fig. 7 provides a comparison between the results from PASTIS and from the end-to-end simulation, in the
case of cophasing errors combining local piston, tip, and tilt errors on the segments. Like in Fig. 4, we plot here
the minimum contrasts, the maximum contrasts, and the average contrasts computed from sets of 250 random
phases, for sets from 1pm to 10nm rms. Once again, each contrast is computed with both techniques: PASTIS
and the end-to-end simulation. As a conclusion, PASTIS still enables a huge gain of time for an error of around

9%.
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Figure 8. Some eigen modes in the piston-tip-tilt case. Top: the four modes with the highest eigen values. Tip and
tilt errors appear to have a bigger impact on the contrast. Bottom: the four modes with the lowest eigen values, which
correspond to low-order aberrations.

Once again, we can apply a Singular Value Decomposition on the matrix M enabling the computation of the
contrast for piston, tip, and tilt aberrations. We can derive the 3 x 36 eigen modes of the chosen telescope. This
information enables a better understanding of the phasing structures that deteriorate the contrast the most. It
is then possible to optimize the backplane architecture or the sensitivity of specific edge sensors to avoid the
dominant modes. For instance, Fig. 8 gives some of these eigen modes for the chosen telescope, the top ones
corresponding to the ones with the highest eigen values, so impacting the contrast the most, and the bottom
ones corresponding to the ones with the smallest eigen values, so impacting the contrast the least. We can
deduce from this figure that the control of the tip-tilt on the second ring, mainly for one every two segments, is
primordial. On the opposite, the last modes indicate that the coronagraph is highly resistant to global low-order
aberrations. Such an information can be determinant when it comes to choose a coronagraph between several
options providing otherwise similar performance.

Like in the one single Zernike polynomial case, it is also possible to quantify the relative importance of these
eigen modes, or to obtain constraints to respect on each mode to achieve a target constraints. Fig. 9 provides
for instance the constraints per mode to achieve a contrast of 1076 in the dark hole. We can notice that the 40
first modes are quite equivalent in term of constraints (between 0.5nm and lnm rms), while the modes higher
than the 100" one seem negligible when it comes to cophasing (constraints higher than 8nm rms).

4. DYNAMICAL CASE EXTENSION

In the previous sections, only static aberrations were considered. However, multiple dynamical factors generate
vibrations or segments’ motions: cryocoolers, motors, thermal drifts, or even resonance effects. Therefore, we do
not consider a snapshot image or an image obtained with static aberrations only, but an image integrated over
an exposure time T¢,p, obtained from successive images taken at a frame rate F' = 400 Hz.

In this situation, PASTIS shows its main advantage. Indeed, the end-to-end simulation would require Tz, X F'
iterations to provide the contrast of one single long exposure image, while PASTIS, as we will see in this section,
remains one single operation.

We also study one specific application, where all segments vibrate at the same frequency f = 87.3Hz around
the flat position but with different amplitudes and phase delays.
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Constraints on the different modes

10

Mode contribution g, (nm)

_IIIIIIIIIIIIIIIIIII_

0 20 40 60 80 100
Eigen mode p

Figure 9. Contributions (0p)pe[0,n,e,—1] On the different piston-tip-tilt modes to reach a final target contrast of 1076,

4.1 Theory for the generic case

In Eq. 5, we express the contrast as a function of the vector A;, containing all the Zernike polynomial coefficients,
and the matrix M; which is a constant of the system. In the dynamical case, this equation becomes:

C(t) =Cy+ Al(t)MlAl(t)t
Nseg Mseg 13
=Co+ D > ara(t)an, i (6 s )

ki1=1ko=1

where t is the time variable. After a long exposure time, the integrated image has a contrast C' in the dark hole
that corresponds to the average of the contrasts of all the intermediate images.

C=(CM)r.,,
Nseg Mseg (14)
=Co+ Y > (a1 ()aks 1 (6) Ty My s

k?l =1 k}2:1
where T, is the exposure time.
4.2 Application to the case where all segments vibrate at the same frequency
4.2.1 Theory
In this case, all segments vibrate around the flat position:
Vk € [1,nseq), ak,i(t) = axcos(ft + ¢) (15)
In the appendix A, it is demonstrated that:

COS((ZSIQ B ¢k2) ~

V(k1, k2) € (1, nseg)”, (any 1 (D) arg (1)1, = 5 Qg Gk, (16)
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Cumulative contrasts over time
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Figure 10. Example of temporal integration of the contrast, for piston-like vibrations. The segments vibrate at the
frequency 87.3Hz and the amplitudes of the vibrations over all segments are 100pm. Furthermore: 1) to obtain the red
curve, we compute the integrated PSF up to the time at the abscissa, then compute the contrast of this integrated PSF;
this integrated contrast should converge towards the value computed in Eq. 17, 2) to obtain the green curve, we compute
the contrast from the static PASTIS model at each time sample and average it up to the time at the abscissa, 3) the grey
curve is constant and corresponds to the final contrast computed from Eq. 17.

Therefore, Eq. 14 becomes:

Nseg Mseg

. Cos
C = CO + Z Z Gk, Uk, ¢k1 (ka)mkl,kz,l
o 2 (17)

=Cy+ AM' At

where A contains all the vibration amplitudes d@; and V(i,7) € [1,nseq)?, M'[i, j] = MMZ ¢, 5]

4.2.2 Application

We apply now this result for piston-like vibrations of frequency f = 87.3Hz. The vibration amplitudes A are
random but with an rms value of 100pm, and the vibration delays (¢) are random between —m and 7. The
exposure time is Tezp = 0.1s. Also, we sample the time and consider that 400 images are taken by seconds.
Fig. 10 and table 1 present the results:

- the red curves: we consider the PSF integrated up to the time ¢ of the abscissa, which mean the average

PSF of all previous successive PSFs. The red curve corresponds to the contrast of this intermediate integrated
PSF at the time ¢. This computation method is also called ”Successive E2E” in the table.

- the green curves: at the time ¢, we compute the contrasts of all images taken before thanks to the static
PASTIS model as presented in section 2. The green curve corresponds to the average of these contrasts at the
time ¢. This computation method is also called ” Successive PASTIS-STA” in the table.

- the grey curves are constant and correspond to the dynamic contrasts computed thanks to Eq. 17.

In the ideal case, ie. for a 0% error on the estimation of the contrast, the red and green curves should converge
towards the grey curves. In practice, in our cases we have 0.03% error.

We know from section 2.2.2 that there is a 3% error between the contrasts computed from end-to-end simula-
tion and from PASTIS-STA, but the end-to-end simulations take 107 times longer to compute. Therefore, until
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PASTIS-DYN Successive Successive Error between Error between
PASTIS-STA E2E PASTIS-DYN and PASTIS-DYN and
successive E2E successive PASTIS-STA
421 x 1079 420x 1079 | 421 x 1077 0.03% 0.36%

Table 1. Contrasts and errors of the example introduced in Fig. 10.

Error budget on segment piston-like vibrations

1065 T T T TTTTT T T T T T T 1711
I |—— Max contrast for PASTIS-DYN 2
i Max contrast for PASTIS-STA v
107 &= |—— Mean contrast for PASTIS-DYN =
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Figure 11. Contrast as a function of the rms piston-like vibrations on the segments. It was computed through two
methods: the average of successive PASTIS-STA models (dashed lines) and the PASTIS-DYN model (continuous lines).
For each rms value, 1000 random phases are selected.

the end of this section, we do not apply the end-to-end simulation anymore and compare PASTIS-DYN to the
output of successive PASTIS-STA only, considering that successive PASTIS-STA provide outputs close enough
to successive end-to-end simulations.

We now set T,y = 5s. We consider random fl, with rms values between 1 pm and 1 nm. For each rms
value, we randomly pick 1000 different amplitudes A and 1000 different phase delays’ sets (¢y). To each of these
configurations of segments’ vibrations, we apply 1) successive PASTIS-STA over the 5 seconds of Tey, and 2)
PASTIS-DYN. For each rms value of A, we select the lowest contrasts computed with both methods, the mean
contrasts, and the highest contrasts. Fig. 11 provides the results of this test: the outputs from PASTIS-DYN
cannot be identified from the ones from the successive PASTIS-STA. To quantify the error of PASTIS-DYN
compared to the output of successive PASTIS-STA, there is a 1.80 x 107°% rms error between the two mean

curves, and for 1000 random sets of vibrations, the error between the outputs from PASTIS-DYN and successive
PASTIS-STA is 8.30 x 107°% rms.

5. CONCLUSIONS

In this proceeding, we have introduced an analytical model called PASTIS. It was demonstrated in Leboulleux
et al. (2017)° and Leboulleux et al. (2018)!° in the case of one single static Zernike polynomial, summarized
in section 2. This proceeding mainly extends the use of PASTIS to more complex situations: the segment-level
aberrations are static combinations of several Zernike polynomials and dynamical effects such as vibrations also
affect the system.

In the first of these two cases, we obtained a very good correlation between the results from the end-to-end
simulation and PASTIS, with an rms error of around 9%. We could also identify the eigen modes of the phasing
aberrations made of local piston, tip, and tilt and in particular the eigen modes that impact the contrast the
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most. We could also quantify the relative impacts of these modes and provide absolute constraints to respect in
order to maintain a target contrast.

As a second application case, we focused on segments’ instabilities, in particular vibrations. When the
temporal dimension is considered, PASTIS is particularly interesting, since it is extremely faster to compute
than an end-to-end simulation. We noticed that this gain of computation time can be even more improved
by reducing the successive contrast computations in one single operation, even after a long exposure time. We
obtained very low errors in the contrasts when comparing the output of this one single operation (PASTIS-DYN),
the average of the successive contrasts over time computed with PASTIS as presented in section 2 (PASTIS-STA),
and the contrast of image obtained from successive end-to-end simulations and integrated over the exposure time
(E2E).

In all theses cases, PASTIS provides not only a significant gain of time with a low error, but also a better
comprehension of the system and its robustness. Knowing the eigen modes of the segmented primary mirror and
their relative sensitivities to contrast enables to optimize the system, for instance the choice of edge sensors for
segment’s positioning or the architecture of the backplane structure.

Other parameters can also be optimized, such as the number of segments, their sizes and shapes, and the
coronagraph itself, the objective being to get an optimal system that combines an absolute performance enabling
exo-Earth imaging and a robustness to static and dynamic perturbations. PASTIS will enable a fast testing of
these parameters in the path to make the next generation of space telescopes both performant and robust.

To diversify its applications and the used configurations, PASTIS is also currently being applied to the JWST
for stability studies®® and should be tested in laboratory on the High-contrast imager for Complex Aperture
Telescopes (HiCAT) testbed at the Space Telescope Science Institute (STScl).?*
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APPENDIX A.
We demonstrate here that V(ki, k2) € [1, nseg)?, (ary i (t)any 1 (8)) 1., = a’“lza’% cos(¢r, — ¢Pr,) for Teyp >>1/f.

1

Temp
(ak, 1(t)ak, 1 (t))1,,, = T / gy Aoy COS(froyt + Ory ) cOS(fryt + Ppy) dt
0

exp
1 fTear 1
= / Ak, Ak, 7(COS(¢k1 - ¢k2) + COS(th + ¢k2 + ¢k1 )) dt
Teap Jo 2 (18)
apan, , [T Teap
=St ([ coston, — oude+ [ cos(zpt+ on, + ou))de
2T€$P 0 0
Qg, Qg
= S (T cos(on, — 012) +0)
since Tezp >> 1/ f. We obtain:
g, Qk,
(aky 1 () any 1 ()1, = k2 "2 cos(dr, — Pk, (19)
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